Building ActiveX Controls

Building ActiveX
Controls

Objectives

Learn the stepsin creating a ssimple ActiveX control.
Investigate the events that occur in a UserControl object’s life cycle.

Use the ActiveX Control Interface Wizard to create most of a control’s
code.

TIP: All code examples for this chapter can be found in the text file
ACTIVEX.TXT. A finished version of the control can be found in the sample
project PRGMETER.VBP, and you'll find atest project as well
(TESTPM.VBP).

Advanced Visual Basic 6.0 Programming Concepts 28-1
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

What Is an ActiveX Control, Anyway?

If you've developed applications in ailmost any Microsoft devel opment
environment, you' ve used ActiveX controls. These user-interface elements
(previoudly called OLE controls) provide extensions to the native
environment. Some pertinent factoids:

ActiveX controls can only be instantiated in a host application.

An ActiveX control isbasically an in-process Automation server, with
an optional user interface.

A single OCX file (the disk file that contains ActiveX controls) can
contain many controls.

If you're intending to provide functionality without a user interface,
you may be better off using an ActiveX DLL. There’'sapriceto pay
for the interface elements of an ActiveX control (first of all, they
require aform to be loaded in order to “cometo life”).

The remainder of this chapter walks you through the process of creating and
using asimple ActiveX control: a continuous progress meter. Figure 1 shows
the control in design view, and Figure 2 shows the control in use on aform.

e ProgressMeter - Meter (UserControl) _ O] x|
(= I ——— [= T ——
Progress Meter
PSP .
D:: -
4] | ¥

Figure 1. The Progress Meter control in design view.

&. Test Progress Meter | [O]]
Progress Meter
| [59
[| [l

~Properties
Set the Color |
Set the Font |

Caption: |Progress Meter

Figure 2. The sample ProgressMeter test form.

28-2

Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

What Is an ActiveX Control, Anyway?

TIP: As we work through this chapter, we'll build the entire control from scratch.
Y ou needn’t work through the chapter, however — the finished control is
included on your sample diskette, as the project PRGMETER.VBP, and the
TESTPM.VBG project group file to load both the control and the test
project.

NOTE Unlike most other chapters, this one consists entirely of a set of
steps, with explanation. If you can, you'll benefit the most from
working through these steps, either during class or back at your
home/office.

Advanced Visual Basic 6.0 Programming Concepts 28-3
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

Creating the ProgressMeter Project

Although you can include an ActiveX control in any type of project, it'll only
be available outside the project, as an ActiveX control that you can insert into
other projects, if you create the project as an ActiveX Control project, and
compileit to an OCX file.

1. Create a new ActiveX Control project. At this point, Visual Basic
creates a UserControl object, presented to you in the UserControl designer,
named UserControl 1.

2. Choose the Project|Projectl Properties, and fill in the properties as
shown below, in Figure 3, and then dismiss the dialog box:

Project] - Project Properties |
General I b ke I I:-:nmpilel I:l:umpcunentl Del:uuggingl
Project Type: Skartup Object:
I.ﬁ.ctivex Conkral j II{NDne]I j
Project Mame:
I ProgressiMeter
Project Help
Help File Mame: Conkext I
| of
Project Descripkion:
I Progress Meter Cankral
I | Unattended Execition UL i)
I ; | Apartment Threaded j
v L Activex Conk
= S S £ Thread per OEject
r Require License Key & Thread Fool Iﬁ threads
I | Retained In Memary:
| k. I Cancel | Help
Figure 3. Set the project properties before doing anything else.
What do these properties do?

The Project Name property specifies the name of the type library for
the compiled .OCX file.

The Project Description property specifies the name users will see
when they display the list of installed ActiveX components.

28-4

Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Creating the ProgressMeter Project

3. Inthe Properties sheet for the new UserControl object, set the Name
property to be Meter. This becomes the class name for the control (just
like CommandButton, or CommonDialog).

4. Resize the control designer so it’s rectangular in shape. Thi sets the default
size of the control, and we'll need awide, short design area.

5. Save the project: from the File menu, choose the Save Project item. Save
the control as Meter (Visual Basic adds the .CTL extension) and the
project as PrgMeter (with the .VBP extension).

Advanced Visual Basic 6.0 Programming Concepts 28-5
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

Adding the TestMeter Project

In order to test your control, you'll need aform. To make it simple for you to
test ActiveX controls as they’ re being built, Visual Basic allows you to add a
second project to your workspace. Y ou can add aform in this second project,
and run the form in both design and run mode with the original ActiveX
control project in run mode.

Y ou can save the two projects together as a project group (.VBG) file. This
section shows how to add the second project, and how to save the project
group file.

1. Add the new project: From the File menu, choose the Add Project menu
item, and choose the Standard EXE project type. The form that’s part of
the new project (Form1) will become your test form. Y ou should now be
able to see both projects in the Project window, as shown in Figure 4.

oo |

EI ProgressMeter (Prgieter.vbp)
- B85 User Confrols

L Meter (Meter.ctl
-5 Projectl {Project1)
= Farms

------ B3 Forml (Formi)

Figure 4. Once you add a second project, the new project becomes the startup
project.

2. Save the project group: From the File menu, choose the Save Project
Group menu item. Save the form as TestPM.FRM, the project as
TestPM.VBP, and the group file as TestPM.VBG.

28-6 Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Running the ProgressMeter at Design Time

Running the ProgressMeter at Design
Time

Unlike any other Visual Basic component type, ActiveX controls have three
stages in their “life cycle” (most other components have only two: design-time
and run-time):

Design-time for the control—at this stage, you' re setting the
properties and behaviors the control will exhibit when placed into a
host.

Run-time for the control/Design-time for the host—at this stage, the
control’ s project is running. It can react to events, but the host form is
in design view.

Run-time for the control/Run-time for the host—at this stage, the
control is running, and the host is running. Both the control and the
host can react to events.

Between each stage, Visua Basic destroys and recreates the control, and (this
isthe important part) triggers various events, depending on the stage of the
control’s “life.”

This section will demonstrate how the control project can be running (that is,
executing code) while the host project can be in design mode.

1. Inthe Project window, double-click the Meter control to make it the
active designer.

2. Add aTimer control to the design surface, and set the control’s Interval
property to be 1000.

3. Add aLabel control to the design surface, and make it large enough to
read a short text string.

4. Double-click the Timer control, to add some code.

5. Add code so that the procedure looks like this:
" Code example #1.
Private Sub Tinmer1 Timer()

Label 1. Caption = Tine
End Sub

6. Close all the designer windows. Doing this causes Visua Basic to run the
ActiveX control’s project, and itsicon should now be available in the

Advanced Visual Basic 6.0 Programming Concepts 28-7
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

Toolbox. Figure 5 shows the tool tip and the control available in the
Toolbox.

Figure 5. Once you close all the designer windows, your control is availablein the
Toolbox.

Open Form1 in design view and place an instance of the Meter control on
the form. If you wait a second, you’ll notice that the new control’ s label
displays the current time. Figure 6 shows the control running on the form
that’sin Design view.

. Project1 - Form1 [Form] =] E3
1

O [m]

im. Form1 _ (O] x|

14044 PM

Figure 6. Even though the form isn’t running, the code in the new ActiveX control
is.

To see what happens when the control is open in design view, double
click on the Meter control in the Project window. Thiswill open the
designer for the control, and will disable the control in the Toolbox and on
the sample form. Figure 7 shows this situation.

28-8

Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Running the ProgressMeter at Design Time

10.

11.

i/ Project] - Form1 [Form]
[m]

General

I

[=IE3
i x|

@< Ep o~

L=
=

2/ W Duee [» | 8

b & [Gl

Figure 7. Once the control’s open in design view, it’s not available on the
Toolbox, nor on the sample form.

When the control’s open in design view, it doesn’'t react to events. Thisis
easy to prove: while the control is “hatched out”, the clock isn't ticking.
The moment you close the control’ s design surfaces, the hatching goes
away, and the ticking resumes.

Delete the Meter control from Form1, in preparation for the next step.
Remove the Timer and Label controls from the Meter control. We won't

need them anymore. (Y ou can delete the event procedure for the Timer
control, aswell.)

Advanced Visual Basic 6.0 Programming Concepts 28-9
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

Life and Times of a ProgressMeter
Control

Like forms, the life cycles of UserControl objects hang on a framework of a
series of events. These events occur as you change the state of the control, and
include the following events:

Initialize, Terminate
InitProperties
ReadProperties
WriteProperties
This section investigates these properties and when they occur.

1. Add the following code to the Meter control’ s module:

" Code example #2.

Private Sub UserControl _Initialize()
Debug. Print "Initialize"

End Sub

Private Sub UserControl _InitProperties()
Debug. Print "InitProperties"
End Sub

Private Sub UserControl _ReadProperties(_
PropBag As PropertyBag)

Debug. Pri nt "ReadProperties"
End Sub

Private Sub UserControl _Term nate()
Debug. Print "Term nate"
End Sub

28-10 Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Life and Times of a ProgressMeter Control

Private Sub UserControl _WiteProperties(_
PropBag As PropertyBag)

Debug. Print "WiteProperties”
End Sub

2. Close all the windows associated with the Meter control.

3. With the Immediate window open, insert a Meter control on the form.
Asyou do this, you'll see three events occur:

Initialize: The Initialize event always occurs when you instantiate a
new object.

InitProperties: The InitProperties event occurs when you first place a
control on aform, alowing your code to set initial values of
properties.
4. Press F5 to run the project. Now you'll see more events being registered
in the Immediate window:

WriteProperties: This event occurs before Visual Basic destroys the
design-time version of the running control. It allows you to save any
changes made to properties at design-time (normally, changes made
through the Properties sheet). These changes are stored with the form
itself.

Terminate: Occurs as the control is being destroyed.

Then, as the control comes “back to life,” you'll see three more events:

Initialize: Again, anew instance of the control has been created.

ReadProperties: This event occurs as the control instance is being
created, giving your code a change to read the saved properties from
the form’s storage.

Why no InitProperties? That event only occurs when you first insert the
control onto a form, when the form’s in design view.

5. Close Forml. You'll see four more events occur:

Terminate: as the run-time instance of the control is destroyed
Initialize: as the new design-time instance of the control is created

ReadProperties: giving your code the chance to re-read the persisted
properties

Why no WriteProperties? That only occurs when you destroy the design-time
instance of the control.

6. Remove all the event procedure code from the UserControl’s module.

Advanced Visual Basic 6.0 Programming Concepts 28-11
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

Drawing the ProgressMeter

Finally, it's time to make the ProgressMeter control actually do something! In
this section, we add constituent controls to the UserControl designer, and write
code to react to the UserControl’ s Resize event.

1. Inthe Project window, double click on the Meter control to open its
designer.
2. Fromthe Toolbox, add a label control to the designer, and set its
properties as follows:
Property Value
Name IblCaption
Alignment 2 - Center
Left 0
Top 0
Width (About the same as the width of the UserControl)
Height (About ¥ the height of the UserControl)
3. Fromthe Toolbox, add a PictureBox control, and set its properties as
follows:
Property Value
Name picMeter
Align 2 —Align Bottom
ClipControls False
Height (About ¥ the height of the UserControl)

4. From the Toolbox, add a Shape control inside the PictureBox control.

Set its properties as follows:

28-12 Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Drawing the ProgressMeter

Property Value
Name shpMeter
Left 0
Top 0
BorderStyle 0 — Transparent
FillColor (Any color you like)
FillStyle 0-Solid
Shape 0 — Rectangle

5. Close dl the designer windows for the UserControl, and open Form1, if
it's not already open. Note that the changes you made to the control appear
on Forml. Resize the control, and note that although the PictureBox
control hugs the bottom of the UserControl, nothing el se works right.

6. To make the Resize event do something, add the following code:

" Code example #3
Const conMessageHeight = 0.5

Private Sub UserControl _Resize()
Set the width of the |abel control.
Set the height to the chosen ratio of the
control's height.
| bl Capti on. Move 0, O,
User Control . Scal eW dt h,
User Control . Scal eHei ght * conMessageHei ght

pi cMet er. Move 0O, | bl Capti on. Hei ght,
| bl Capti on. Wdt h,
User Control . Scal eHei ght * (1 - conMessageHei ght)

shpMeter. Move 0, 0, shpMeter.Wdth, picMeter. Height
End Sub

7. Close al the UserControl’ s designer windows, and try resizing the
control on Forml1. Now it should react reasonably.

Advanced Visual Basic 6.0 Programming Concepts 28-13
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

Working wi
Properties

th the ProgressMeter’s

So far we' ve managed to conglomerate some controls and have them creste a
new control type, but you can’t use the new control to do anything, because it
provides amost no properties.

By the time it's complete, this control will expose the following properties:

BackColor: a standard color object, allowing you to set the color of
the caption’ s background.

Caption: astring, corresponding to the Caption property of the
IbIMessage control’ s Caption property.

Percent: an integer, controls the amount of the progress meter that
displays. It doesn’'t correspond to any built-in property.

FillColor: a standard color object, allowing you to set the color of the
progress meter. Corresponds to the FillColor property of the shpMeter
control.

Font: a Font object, including the standard font information,
corresponding to the IbIMessage control’ s Font.

In this section, we'll create the Caption property by hand, and will let the
ActiveX Control Interface Wizard create the rest property.

TIP:

It'simportant that you understand how to create properties by hand, and to
know what the issues are. But, in reality, you'll use the ActiveX Control
Interface Wizard to write most of the code for you.

1. Cre

ate the Caption property: Double-click the UserControl’s designer to

load the code module. Add the following procedures:

" Code
Public

Ca
End Pr

example #4

Property Get Caption() As String
ption = | bl Message. Capti on
operty

28-14

Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Working with the ProgressMeter’s Properties

Public Property Let Caption(ByVal NewCaption As String)
| bl Message. Capti on = NewCapti on
PropertyChanged *Caption

End Property

Just as with other ActiveX components, a UserControl’s module is a class
module, and you use Property Get and Let procedures to retrieve and set
property values. The only difference here is the use of the PropertyChanged
method. This new statement tells the Properties window to update its display,
and informs Visual Basic that the control’ s properties storage have changed.

2. Perhaps you' ve noticed that the Caption property for controlsin Visual
Basic has a special characteristic: Asyou type, the control reflects the text
you're typing. To make that happen, open the Tools|Procedure
Attributes dialog box for the UserControl object. The Caption procedure
should aready be selected in the Name: list.

3. Click the Advanced button, and, in the Procedure ID: list, select the
Caption item. This choice indicates to Visual Basic that this procedure
represents the Caption property for this object, and so it can add the
appropriate Property window behavior. Click OK when you're done.
Figure 8 shows the dialog box, once you’ ve completed your mission.

Procedure Attributes |
Mame: | Caption =l 0K
De=scription:

I j Cancel
N Apply
Projeck Help File: Help Contexk 10
| I 1] Glwanced | =
IJse this Page in
Procedure ID: Property Browser! Property Category:
| =) Jimone) =] | trone) =]
— Akkributes
[Hide this member [User Interface Default

[T Don't show in Property Browser

—Daka Binding

[Property is data bound
™ [itis propertbinds b Datakield
7 | o in DataRindings collection at design timne
I™ | Braperty will call EankroperbyEhange befare. changing
I | Update immediate

Figure 8. Choose the Caption procedure 1D value for the Caption property.

Advanced Visual Basic 6.0 Programming Concepts 28-15
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

Persisting Property Values

1. Inthe Projects window, double-click on Form1, and if there’sno
control on the form, insert a Meter control on the form. Note that its
Properties sheet includes the property you just created. Change the
value of the Caption property. Now run the form. Note that your
change wasn’t preserved!

2. Persist changed properties: Asyou saw in the previous step, ssmply
changing property values when your form is open in Design view
doesn’'t save those properties. Because Visual Basic recreates the
control every time it changes state, you need to persist the propertiesin
the form’s storage. This property information is stored, in memory, in
the form’s PropertyBag object. In your control’s WriteProperties
event, you'll need to save property values into the PropertyBag object.
Remove any existing WriteProperties event code, and add the
following code to your UserControl’s module:

" Code example #5
Private Sub UserControl _WiteProperties(_
PropBag As PropertyBag)
"Wite property values to storage
Call PropBag-WriteProperty(_
"Caption', IblMessage.Caption, ")
End Sub

The WriteProperty method of the PropertyBag object passed into the event
procedure allows you to specify:

Property name
Property value

Default value —why supply a default value for writing? If the value
you're writing is the same as the default value you specify, Visud
Basic simply skips writing the property value. There’'s no point saving
property values that are the same as the default for the property, and
this saves adding properties to the PropertyBag (and reducing the size
and load time of the form).

3. Load persisted properties: Of course, when your control gets loaded
back up, at run time for its host, you need to retrieve the saved properties
from the PropertyBag and assign them to the control. This happens when
the ReadProperties event occurs. Replace any existing code for the
ReadProperties event with the following code:

28-16

Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Working with the ProgressMeter’s Properties

" Code example #6
Private Sub User Control _ReadProperties(_
PropBag As PropertyBag)
| bl Capti on. Capti on = PropBag. ReadProperty(_
"Caption", |bl Caption. Caption)
End Sub

Just like the WriteProperty method of the PropertyBag object, the
ReadProperty method allows you to specify the property name. It also allows
you to specify adefault value to be used if there’ s no value specified in the
PropertyBag.

Initializing Property Values

To initialize your control’ s properties, first remove the existing
UserControl_InitProperties procedure (if it's still there), and add the following
code to the UserControl’ s module. This code initializes properties when you
insert an instance of the control onto its host, and runs only once for each
instance:

" Code example #7

Private Sub UserControl _InitProperties()
On Error Resune Next
Me. Capti on = Extender. Nanme

End Sub

Wait! What' s that Extender object thing?

The Extender Object

To the user of the control, built-in properties such as Name, Top, Left and
Visible appear to be part of your control. In fact, they’ re provided by the
container provided by the host application, the Extender object. Visual Basic
provides an Extender object that contains your control, as does any other
application that supports ActiveX controls. (These are the properties you seein
the Visual Basic Properties sheet when you create and insert an ActiveX
control that supplies no properties of its own.)

Advanced Visual Basic 6.0 Programming Concepts 28-17
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

WARNING! Not all Extender objects are created equal. That is, although you
can be reasonably safe in assuming that all Extender objects provide
a Name property, beyond that you' Il need to be careful. If you use an
Extender property in your control but the host doesn’t provide the
property, you' re guaranteed to crash and burn. Of course, because
your control runs in-process, there goes your host application as
well. The moral of the story: use Extender properties carefully, and
only with error handling. In addition, not all hosts are created
equally. Some (such as Access 97 and |E) don’t even make the
Extender object available. Make sure and trap for errors!

The Ambient Object

The Ambient object corresponds to the form hosting your UserControl. It
doesn’'t supply properties for your control, it smply hostsit. You can use the
Ambient object to discern the properties of the form containing your control,
and can write code to assimilate those properties. In this example, we'll later
use the BackColor and Font properties of the host form when you insert a new
control onto the form.

TIP: If you want to react to changes to Ambient properties (that is, suppose
someone changes the form’s BackColor property, and you want your control
to always inherit that property), you can write code in the UserControl’s
AmbientChanged event procedure. This event procedure passes to you the
name of the property that was changed. Generally, you'll write a Select Case
statement, based on the name of the changed Ambient property, to
correspondingly alter a property of your UserContral.

Why Not Use the Initialize Event?

Why was this particular code in the InitProperties event procedure, and not in
the Initialize event procedure? Remember, the Initialize event occurs quite
often. The InitProperties event occurs just once, and is the correct place to put
code you only want executed once.

In addition, when the Initialize event occurs, the Extender and Ambient objects
aren't yet available —that is, the control hasn't yet been “sited.” You can't use
the Extender and Ambient objects until the control has actually been placed
into the host (that is, “sited” on the host), and so you must wait for the
InitProperties event.

28-18

Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Using the ActiveX Control Interface Wizard

Using the ActiveX Control Interface

Wizard

We still need to create BackColor, Percent, FillColor, and Font properties.
Although these properties are no more difficult than the one you' ve already
added, we'll use the ActiveX Control Interface Wizard to add these properties,
just as you might use the wizard to add any number of properties to your
UserControl, once you've laid out its user interface.

To use the ActiveX Control Interface Wizard to add one or properties to your

UserControl, follow these steps:

1. Ensure that the wizard is available: pull down the Add-Ins menu. If you
don't see “ActiveX Control Interface Wizard...” on the bottom of the
menu, choose “Add-In Manager...” and select the wizard from the list.

Figure 9 shows the Add-In Manager.

Add-In Manager

Axailable Add-ns

| Load Behavior - a

DTC Framewark, Beqistrar
Microzoft DataTools

Package and Deployment YWizard
Source Code Control

WB B Activel Chl Interface 'wWizard
WB B Activel Doc Migration "izard
WB B Add-In Toaolbar

WB B AP Viewer

WB B Application Wizard

WB & Clazz Builder Utility

WB & Data Form “izard

WB & Data Object Wizard

L A PR PP o PP TN g |

1

Cancel

2l

Startup ¢ Loaded

Startup ¢ Loaded

Startup ¢/ Loaded

| f Help |

D escription

Load Eehavior

W Activek Contral Interface wWizard

=l

¥ Loaded/Unloaded

;I [T Command Line

Figure 9. The Add-In manager allows you to add wizards for the current session,

and for future sessions as well.

2. Start the Wizard: you'll see the introductory page (unless you'vetold it
not to show you this page, previoudy). Figure 10 shows the first page of

the wizard.

Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

28-19

Building ActiveX Controls

ActiveX Control Interface Wizard - Introduction |

The ActiveX Conkrol Interface Wizard helps vou perform the
following steps in creating an Ackivel contral in Yisual Basic,

- Defining the interface (properties, methods, events)
- Creating the underlving code For the interface

Moke: Before you begin, ywou musk have added all the interface
elements that make up the control's appearance.

Moke: Use the Property Page Wizard ko create Property Pages
For waour UserControls,

¥ou can press Back at any time to change vour selections,
Flease click Mext to beqgin,

[~ Skip this screen in the Fukure.

Cancel | = Bark fext = FEimiEh

Figure 10. Introduction for the ActiveX Control Interface Wizard.

3. Select Interface Members: On the next page, select the BackColor,
FillColor, and Font properties from the list of available properties. Figure
11 shows the wizard after selecting all the necessary properties from the
list.

28-20 Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Using the ActiveX Control Interface Wizard

ActiveX Control Interface Wizard - Select Interface Members |

Below is a lisk of Property, Method, and Event names that wou
might want ko use in your contral,

The ones that have been pre-selected are properties, methods,
and events that have already been made public,

Click. Mext ko add wour awn Properties, Methods, and Events.

Arvailable names: Selected names:

DhiClick Evert =] i| BackColor Property
DrawMade Property Capkion Property
DiraniStyle Property FillZalar Property
Crawidth Property — == | Faonk Property
Enabled Property

Fill Skl Propert: |

FontItalic Property

FankMarme Property ;I o |

Help | Cancel | < Back | fext = | FEimiEh

Figure 11. Select new properties from the list of built-in properties. (Caption was
there already — you choose the rest).

4. Add custom items: On the next page, you can add custom properties,
methods, or events. In this case, add a new property named Percent..
Make sure you indicate that it's a property, as shown in Figure 12.

fdd Custom Member |
Mame: IPercent Ok I
—Type Cancel |
I
* Properky Help |
i~ Method
o Event

Figure 12. Add a new element with this dialog box.

5. Set property mappings: The next page alows you to map your control’s
properties to existing control properties. Figure 13 shows the wizard after
mapping the new FillColor property to the FillColor property of shpMeter.
Select mappings as in the following table:

Advanced Visual Basic 6.0 Programming Concepts 28-21
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

Public Name | Maps to Control Member
BackColor IblCaption BackColor
Caption IblCaption Caption
FillColor shpMeter FillColor

Font IblCaption Font

Percent (None)

ActiveX Control Interface Wizard - Set Mapping

You can map the functionality of the properties, methods, or
events in your control to the mermbers in constituent controls.

From the Public Mame list, select one or more properties,
methods, or events, and then select the control and member you
want 1o map it to,

Wihen vou finish mapping, click Mext,

Public Marme:
—Maps to

BackColor Property
C p tion Proper Camiial
FillCalor
Font Property shpfieter
Percent Property

Mermber

IFiIICu lor j

Help | Cancel | < Back | Mesxt = | Eirist |

Figure 13. Use this page to map new properties to existing properties of
constituent controls.

6. Set attributes: This page alows you set attributes for properties that
aren’t directly mapped to built-in propertiesin this session. In this
example, you need to set properties of the Percent property as shown in

Figure 14.

28-22

Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Using the ActiveX Control Interface Wizard

ActiveX Control Interface Wizard - S5et Attributes |

‘fou can set the atkributes of the unmapped members, Any
member wou do not change uses the defaulk values,

Select the public name of the member whose attributes vou
wank to change and modify its values, Repeat For each member
wou wank ko change.,

hen wou Finish modifying the attributes, dick Mext.

—fkkribuke Information

Public Narnz: Data Tvpe Cefaulk Yalue
IInteger j ISIZI
Rurn Tirne Design Tirme
IRead,l"-.-'-.-'rite j IRead,l"-.-'-.-'rite j

Descripkion Argumernts

Setfretrieve the percentage shown in the I

meter

Help | Cancel | < Back | fext = Einish

Figure 14. Set attributes of unmapped properties.

7. Finish up: Once you've made all your changes, Visual Basic writes the
modified code to your module. Before you get a chanceto dig in, the
wizard displays information about what you should do next. It’ s tempting
to disregard this page, but don't. Figure 15 shows the form containing the
suggestions.

m ActiveX Control Interface Wizard Summary

Eelow is a To Do list of items required ko complete the testing, debugging, and -« Save
bullet-proafing of wour UserCantral,

Close

A) Create a best program For vour UserControl

There are bwo waws to set up a test program For wour UserZontrol, depending
on whether vou inserted the control in a Standard EXE, or created an Ackives
Zonkraol project For ik,

If wou created an Ackivex Control project, the Following steps will set up a test
progran;

11 Save ywour UserConkral,

21 Close vour UserControl's designer, to put the control in run mode.

3 If wou haven't already created a test project, add a Standard EXE project

by selecting Add Project from the File menu,

43 In the Toolboy, double-click wour UserCantral's icon bo place an instance of
vour UserConkral an Formi, in khe Standard EXE project, Yoo can move and ;I

Figure 15. The Wizard makes some good suggestions. Follow them!

Advanced Visual Basic 6.0 Programming Concepts 28-23
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

8. Check out the code changes: The wizard will add the appropriate
Property Let and Property Get procedures, and will update the code in
your ReadProperties and WriteProperties events. Figure 16 shows the
Property Set and Get procedures for the new Font property. Note the
comments the wizard added — it uses those the next time it runs, so it
knows how to map the properties to built-in properties.

WARNING! If you look carefully, you'll aso notice that the Wizard commented
out the code you' d already added for the Caption property. Because
you set the mapping in the Wizard, it assumed you no longer wanted
to use the existing code. In this case, that’s not a problem, but be
aware that the wizard will touch your existing code.

M ProgressMeter - Meter [Code) =] B3
I(General} j IPercent [Propertylet] j
End Property -

' WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTE
’Maqpinglnfo=1b1€apt10n,1b1Caption,—1,F0nt
Public Property Get Font() As Font
Set Font = TblCaption. Font
End Property

Public Property Set Font(Byval New_Font As Font)
set lblcCaption. Font = New_Font
PropertyChanged "Font"

End Property J

' WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTE
' MemberInfo=7,0,0,50
Public Property Get Percent() As Integer
Percent = m_Percent
End Property

S=d | 17

Figure 16. The Wizard adds the appropriate code for you.

9. Test out the changes: Put away all the UserControl designers, and check
out the FillColor property on Form1. Y ou should be able to set it in design
view, and have it persisted at run time.

NOTE The OLE_COLOR data type is a special datatype, used for
choosing colors. It indicates to Visual Basic that it should display

28-24 Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Using the ActiveX Control Interface Wizard

a color-picker in the Properties sheet. All color properties should
use OLE_COLOR astheir datatype. The same sort of behavior
exists for the Font property type, and severa others.

Finish the Control

In order to add necessary final touches to the control, you'll need to take afew
more steps.

1. Add codeto the InitProperties event procedure, pulling properties in from
the Extender and Ambient objects (add to the code the Wizard put in the
event procedure, replacing the code you had put there originally):

" Code example #8
Private Sub UserControl _InitProperties()
On Error Resume Next
m Percent = m def Percent
Me._.Caption = Extender.Caption
Set Me.Font = Ambient._Font
Me._.BackColor = Ambient._BackColor
End Sub

2. Add aprocedure to handle setting the width of the progress meter
indicator:

" Code example #9
Private Sub Set Percent ()

shpMeter. Wdth = picMeter. Wdth * Me. Percent / 100
End Sub

3. Add some unobtrusive error handling to the Percent Property Let
procedure. If the value entered by a user istoo high or too low, set it to a
reasonable value. To do that, modify the procedure so it looks like the
code below. Also, add a call to the SetPercent procedure, so the display
matches the property value:

Advanced Visual Basic 6.0 Programming Concepts 28-25
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

" Code example #10
Public Property Let Percent(ByVal New Percent As Integer)
IT NewPercent < O Then NewPercent = 0
IT NewPercent > 100 Then NewPercent = 100
m Percent = New Percent
Call SetPercent
Pr opertyChanged "Percent™
End Property

4. Addacal to SetPercent from the ReadProperties event procedure, so the
meter gets updated when you read properties from storage.

28-26 Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Giving the ProgressMeter a Property Page

Giving the ProgressMeter a Property

Page

Not all host applications will provide a Property window for your control. In
addition, it's become expected for every ActiveX control to supply its own set
or Property pages (and they’ Il be required if the host doesn’t supply a
Properties sheet that can include properties you’ ve created for your control).

Visual Basic makes it smple to create and include property pages with your
control. The Property Page Wizard does most of the work for you, and once
you've set up your property pages, Visua Basic handles their display and
navigation. Visual Basic even provides common property pages (fonts and
colors) for free! Although you can create property pages from scratch (choose
the File]Add Property Page menu), don’'t. The Wizard makes thistrivial.

Using the Property Page Wizard

1. Double click on the Meter control in the Project window to select it.

2. Pull down the Add-Ins menu. If you don’t see Property Page Wizard...
on the menu, use the Add-In Manager to add it.

3. Choose the Add-Ins|Property Page Wizard... menuitem. You'll be
greeted with an introductory page (unless you' ve told the wizard not to
show you this page). Figure 17 shows the introductory page.

Advanced Visual Basic 6.0 Programming Concepts 28-27
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

Property Page Wizard - Introduction |

The Property Page Wizard will help vou create
Property Pages For an existing user control.

You can press Back at any time to change your
selections,

Please click Mext to begin,

[Skip this screen in the Fukure,

Help | Cancel | = Bach:

Figure 17. Introduction to the Property Page wizard.

P |

4. Add custom pages: The second page proposes two standard property
pages, StandardFont and StandardCol or. Because our control uses font and
color properties, leave both enabled. Click the Add button to add a new
page, named General, and use the up and down arrows to move it to the
top of thelist. Figure 18 shows the wizard page once you’ ve added the
new page.

28-28 Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Giving the ProgressMeter a Property Page

Property Page Wizard - Select the Property Pages |

Choose the Property Pagels) you want bo use with
walr user conkral,

To add a new Property Page, click Add, Toinclide a
Property Page, check the check box to the left of the
Property Page. All Property Pages wou want must be
selected, Use the arrow buttons to dekermine the
arder of your Property Pages.

(2ENer:
StandardColar
StandardFont

st
]

Rename

Help | Cancel | < Back Mext = P

Figure 18. Use the Property Page Wizard to use existing and add new property
pages.

5. Assign properties to Property Pages: On the next page, select properties
and assign them to the appropriate property page. The wizard does its best
to guess which page is the correct one. In this case, add Percent and
Caption to the General page. Once you're done, the wizard page should
look like the page shown in Figure 19.

Advanced Visual Basic 6.0 Programming Concepts 28-29
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

Property Page Wizard - Add Properties |

Select the properties wou want ko display on each Property
Page.

Click the Property Page on which wou want the selecked
property to appear, seleck the property, and then click a
move butkan,

Mote: 'Standard' pages cannok be modified,

Awailable Property Pages:

fivailable Properties: zeneral |Stanu:|aru:|Cu:u|u:ur I SkandardFont
=

Capkion

S

Help | Cancel | < Back Mext = Einish

Figure 19. Use the wizard to assign properties to pages.

6. Click the Finish button: Complete the Wizard' s duties by clicking the
Finish button. Thiswill insert a new PropertyPage object into your project.

7. Test the Property Pages: Ensure that all the designer windows for the
UserControl are closed, then right-click on a Meter control on Form1, and
choose the Properties item. Y ou should see a Property Page as shown in
Figure 20.

28-30 Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Giving the ProgressMeter a Property Page

. Projectl - Form1 [Form]

Lahell

DPE“}' Pages

General | Colar | Fort |

Caphion;
ILabeH

Percent;

|5III

(] Cancel Apply

Figure 20. A user-created Property Page in action.

8. Save the project: When you save the project, the property pages are
stored as .PAG files. Save your project now.

NOTE The use of property pages with multiple controls complicates the
issues somewhat. Check out the Visual Basic Books Online for
more information on this advanced topic.

Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

28-31

Building ActiveX Controls

Adding
Control

Events to the ProgressMeter

So now you've got your control working moderately well, and you'd like to
useit on aform. On the form, you'd like to display the current percent value
for the meter in atext box. You peruse the available events for the control, and
notice there’' s no Change event. Y ou certainly need one, in order to solve your
problem.

If you'd like to write code to react to events generated by your ActiveX
control, you'll be sorely disappointed. Double-clicking on the control while
it'son aform in design view will give you a few meager options, but if you
want more interesting events, you' [l need to write the code yoursalf. Figure 21
shows the events you' ll be offered, until you take matters into your own hands
and add your own events.

M Project] - Form1 {Code) M= B
IMeter1 j GotFocus j
Option Explicit g::g:;li:

e otFocus
Frivate Sub Meterl GotFodlostFocus

End Sub

S=d | LFJ

Figure 21. UserControls don’t supply many interesting events, by default.

In this section, we'll add two eventsto your control, so that programmers using
the control can react to both Click and Change events. Raising events from
your controls is no different than raising events from any other Activex
component, and requires two steps:

Declare the event, using the Event keyword.

Raise the event, using the RaiseEvent keyword.
Follow these stepsto add the two events to the Meter control:

1. Declare the events: Add the following code to the Declarations area of
your UserControl’s module, to declare the events for later use:

28-32

Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Adding Events to the ProgressMeter Control

" Code example #11
Public Event Cick()
Publ i c Event Change()

2. Add the code to raise the Click event: Add the following to the control’s
module:

" Code example #12

Private Sub | bl Caption_Cick()
Rai seEvent dick

End Sub

Private Sub picMeter_Cick()
Rai seEvent dick
End Sub

3. Add code to raise the Change event: Add the RaiseEvent statement to
the existing SetPercent procedure, so that it looks like the code below, or
replace the existing procedure with the one below:

" Code example #13

Private Sub Set Percent ()
shpMeter. Wdth = picMeter. Wdth * Me. Percent / 100
RaiseEvent Change

End Sub

That's al it takes to add the two events. Time to test it out! To do so, follow
these steps:

1. If you don't have an instance of the Meter control on Forml, add one
(Meterl).

2. Add aHorizontal scroll bar (Hscroll1) to the form, and set its Max
property to be 100.

3. Add atext box (Textl) to the form, and delete the default value from its
Text property.

4. Double click on the Meter control, choose Change from the list of events,
and add code so that the procedure looks like this:

Advanced Visual Basic 6.0 Programming Concepts 28-33
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

" Code example #14

Private Sub Meterl1 Change()
Text1l = Meterl. Percent

End Sub

5. Add code to react to the Change event of HScroll1:

" Code example #15
Private Sub HScrol |l 1_Change()

Met er 1. Percent = HScroll 1. Val ue
End Sub

6. Giveitatry! Asyou change the scroll bar’s value, the meter ought to
progress, and the value in the text box should reflect the percentage in the

progress meter.

You've doneit!

TIP: You can aso use the ActiveX Control Interface Wizard to add events to your
controls, but getting the RaiseEvent calls in the right place can be tricky, and
limiting, with the Wizard. That’s why we opted to add events by hand in this

example.

28-34

Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Compiling the ProgressMeter Control

Compiling the ProgressMeter Control

Before you can distribute your ActiveX control, you must compile its project
into an OCX file. To do this, and test out the compiled version, follow these

steps:

1.

2.

5.

Make sure the TestPM project isn’t running.

In the Project window, select your ActiveX control, so that its project
becomes the active project.

From the File menu, choose Make PrgMeter.OCX. Supply a path for the
OCX file. Make sure and save the project, as well.

Remove the ActiveX control project from the project group, so you can
test the compiled OCX. To do this, right click on the project, and choose
Remove Project. When you do that, Visual Basic will remind you that
another project is using the control, and verify that you want to removeit.
Choose Y es. When you remove the project, Visual Basic looks in the
registry for the information about your compiled OCX, and replaces
TestPM’ s reference to the control in the project with the new OCX
reference.

Run the TestPM project. It'll now be using the compiled OCX.

For even more fun, try using PrgMeter.OCX in other applications, such as
Microsoft Excel, as well.

Advanced Visual Basic 6.0 Programming Concepts 28-35
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

Distributing the ProgressMeter

Control

To distribute your ActiveX control to users who may not already have Visual
Basic installed on their computers, you'll need to run the Package and
Deployment Wizard, and build a set of distribution diskettes. If you're going to
be distributing your control viathe Internet, on aweb page, you'll need to
follow the same steps.

The process is smple, and requires almost no intervention that’s specific to
ActiveX controls. The only question happens near the end, when the Wizard
asksif your ActiveX control will be used anywhere besidesin the Visual Basic
environment. If so, you must include the property page DLL. You'll need to
answer that question, then finish the steps.

Once you've answered all the questions, the wizard creates a full installation
set for your control, including the Visual Basic run-time library.

If you're planning on distributing your ActiveX control for use on web pages,
there are afew more steps. We'll discuss those options in the next section.

TIP: To avoid creating multiple CLSID entriesin the registry, as you build and test
your component, turn on Binary Compatibility (and point to the OCX file
you've aready built). That way, every time you build a new version, you'll
reuse the existing GUIDs. Of course, if you modify public interfaces, you'll
need to turn off compatibility and recreate the component, using new GUIDs.

28-36

Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

ActiveX Controls and the Internet

ActiveX Controls and the Internet

Using ActiveX Controls on Web Pages

So, you' ve written an ActiveX that you'd like to use as part of aweb page. A
few questions arise:

How do you insert it into the web page?

How do you get the control onto clients machines, so they can view
the control on the web page? (At this point, all ActiveX controls used
in web pages must reside on the client machine.)

How do you convince the browser to load your control, given al the
issues dealing with security?

The following sections will demonstrate setting up a control for web page
usage, and will, along the way, answer these questions.

Preparing for Internet Download

You'd like to use the ProgressMeter control on aweb site. The first step, then,
isto package the control for download. Web browsers that support ActiveX
controls understand how to download components they need, and only the
components they need. But you’ ve got to help out by packaging the component
and placing it somewhere the browser can find it (on the web server).

To package an Internet component for download, follow these steps:

1. From within the Visual Basic development environment, with the
ProgressMeter project loaded, run the Package and Deployment Wizard.
After choosing the Package portion, choose the Internet Package option
(as opposed to the normal Standard Setup Package option).

2. Follow the same path as for a normal package.

3. Onthe File Source page (see Figure 22), choose the download location for
run-time components. Unless you're in an Intranet environment, you don’t
want people downloading Microsoft’s components from your web site
(they have alot more bandwidth than you do!). In addition, if you have
people download them from Microsoft’ s site, they’ re guaranteed to get the
most current versions.

NOTE Only necessary files will be downloaded. That is, if a user already
has the Visual Basic run-time DLL on the machine, visiting aweb

Advanced Visual Basic 6.0 Programming Concepts 28-37
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

site that uses your ActiveX control won’t cause them to download
the (rather large) file again.

-E-,- Package and Deployment Wizard - File Source

Separate runkime cabinets are linked ko those on the Microsoft
Wieh site (specified by the .dep file) or ko another location vou
specify below,

Please select each file in the list and specify the appropriate
sOUFCeE,
= @ |
Files: —File source
M3STKPRP.DLL ™ Include in this cab

F‘ Meter,ocx
WER Funkime and OLE Aukom

' Download From Microsoft Web site

" Download From alkernate Web site

(enter URL ar LMC)

Help | Cancel | < Back I Mext = I FEimist

Figure 22. L et users download run-time components from Microsoft.

4. On the Safety Settings page, make sure the Safe for Initialization and
Safe for Scripting options are both set to Yes for your control (see Figure
23).

WARNING! By checking these options, you're only specifying that you think
your control is safe. You're not providing any guarantees, and
Internet Explorer will only display the control if the browser’s
Safety Level option setting is set to Medium.

28-38 Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

ActiveX Controls and the Internet

-E-,- Package and Deployment Wizard - S5afety Settings

Safety settings could nok be determined For the Following
components, To mark a component as safe, seleck the
component, then choose the appropriate settings from the
other colurmns in the table.

Safety sektings:

omponents |SaFe fFor Scripting |SaFe For Initialization

[Meter Yes Yes

Help | Cancel < Back I Mext = I FEimist

Figure 23. Is it safe?

5. Click Next to open the Finished! page. At this point, you can save the
information you' ve entered as a template for the next time, if you like.

6. Check out the files placed into the output directory. Figure 24 shows the
output files, the CAB file containing the download for your ActiveX
control, and a sample HTM file demonstrating how to insert your control

onto aweb page.
I ame | Size | Tupe |
LS upport File Folder
Prgketer. CAR 17KE CaB File
@ ProMeter HTM 1EE Intemet Documnent...
<] | i
Figure 24. The Package and Deployment Wizard creates a CAB file and a sample
HTM file.

Testing the Control

To test the contral in its web page, follow these steps:

1. Make sure the control isn’t registered on your machine. To do this, and
open Explorer, navigate to the directory containing your OCX. From the

Advanced Visual Basic 6.0 Programming Concepts 28-39
Copyright © 1998 by Application Devel opers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

Start menu, choose Run, and type (replacing the general name with your
own):

REGSVR32 / U C:\YourPath\YourFile.OCX

2. Start Internet Explorer 3.0 or 4.0. In IE3, choose the
View|Options|Security dialog box, and select the Safety Level command
button. Select the High setting. Close all the dialogs. In |E4, choose the
View|Internet Options|Security dialog, select the zone, and select the
High setting for the correct zone.

3. Totest the security:

In IE3: From Windows Explorer, double-click on PRGMETER.HTM
to load it into your browser. It should fail, complaining about security.
In IE3, the dialog looks like that shown in Figure 25.

In IE4: You can't simply click on thefileto load it in |E4 and expect
security settings to work. Y ou must actually move thefilesto a
directory managed by your web server, and use the HTTP protocol to
load the page.

Potential safety violation avoided

This page contains active content that is not verifiably safe to
display. To protectyour computer, this content will not be
displayed.

Choose Help to find how wau can change your safety settings so
wiou can view potentially unsafe content.

Help

Figure 25. High security settings won't work for your unsigned ActiveX control.

4. Go back to Internet Explorer, and change the Safety Level setting to be
Medium.

5. Again, load PRGMETER.HTM. Thistime, you'll get a different dialog
box, but your control will get loaded. (See Figure 26 for IE3' s dialog.)

Authenticode(tm) Security Technology HE

AMvindows application is aftermpting to open or install the following software
companent:

file:f# JATEMPY SWSETURPPRGMETERT \ Prgheter CAB
FPlease he aware that some files may contain viruses or otherwise harm your

computer. This component has not been digitally "signed" by its publisher. Do
wiou wish to continue?

Figure 26. Isn't paranoia a wonderful thing?

28-40 Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

ActiveX Controls and the Internet

What’s in that HTML?

If you investigate the sample web page the Setup Wizard creates for you,
you'll find this important chunk of HTML code:

<OBJECT | D="Meter" W DTH=395 HEl GHT=80

CLASSI D="CLSI D: C9BC50B0- F241- 11D0- 82BA- 00AA00698579"
CODEBASE="Pr gMet er . CAB#ver si on=1, 0, 0, 0" >

</ OBJECT>

The important parts of thisHTML tag are described in the following table.

CLASSID Contains the GUID (ClassID) for the ActiveX control.
Thisisthe only value in this table that you must not
change. (This may be different on your machine.)

ID Name of the control, necessary when using scripting to
manipul ate the control.

CODEBASE Location and minimum version number of the control.
You'll need to modify the location to match your web

site.
WIDTH Width of the control’s space on the web page, in pixels.
HEIGHT Height of the control’ s space on the web page, in pixels.

If you want to try setting parametersin the HTML, add a PARAM tag, like
these (setting values for the Caption and Percent properties):

<OBJECT | D="Meter" W DTH=395 HEl GHT=80

CLASSI D="CLSI D: C9BC50B0- F241- 11D0- 82BA- 00AA00698579"
CODEBASE="Pr gMet er . CAB#ver si on=1, 0, 0, 0" >

<PARAM NAME="'Caption' VALUE="This is a progress meter'>
<PARAM NAME="'Percent" VALUE="72">

</ OBJECT>

Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

28-41

Building ActiveX Controls

Summary

Rather than summarizing the chapter, this section presents alist of stepsyou
should follow when creating an ActiveX control:

1. Determine the features your control will provide.
4. Design the appearance of your control.

5. Design the interface for your control — that is, the properties, methods,
and events your control will expose.

6. Create aproject group consisting of your control project and a test project.

7. Implement the appearance of your control by adding controls and/or code
to the UserControl object.

8. Implement the interface and features of your control.

9. Asyou add each interface element or feature, add features to your test
project to exercise the new functionality.

10. Design and implement property pages for your control.

11. Compile your control component (.ocx file) and test it with all potential
target applications.

28-42 Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

ActiveX Controls and the Internet

Questions

What makes an ActiveX control and an ActiveX DLL similar?
What' s the simplest way to add properties to an ActiveX control ?
How can you enable the icon for the new ActiveX control in the toolbox?

How do you raise events from your new ActiveX control ?

Advanced Visual Basic 6.0 Programming Concepts 28-43
Copyright © 1998 by Application Developers Training Company
All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

Building ActiveX Controls

Answers

1. What makes an ActiveX control and an ActiveX DLL similar?
They’re both run in-process.

2. What'sthe simplest way to add propertiesto an ActiveX control ?
Run the ActiveX Control Interface Wizard.

3. How can you enable the icon for the new ActiveX control in the toolbox?
Make sure all the designer windows for the control are closed.

4. How do you raise events from your new ActiveX control?
Use the Event declaration, and the RaiseEvent statement.

28-44 Advanced Visual Basic 6.0 Programming Concepts
Copyright © 1998 by Application Developers Training Company

All rights reserved. Reproduction is strictly prohibited.

Last updated: 11/17/98

